REPRESENTING LIGHT IN THE DIGITAL REALM

Stelios Zerefos, Architect

Associate Professor, School of Applied Arts, Hellenic Open University

Scope

- To present you ways of representing light and lighting designs
- To understand the difference in conveying information to different audiences
- To aid you with the presentation of your lighting design scheme

Use of light and shadow to communicate 3d space

Use of light and shadow to communicate 3d space

?

7

Post-war affluence

Representing lighting design

Lighting can be represented on a screen for conveying information on the:

quantitative characteristics of light
(intensity, energy, decay, multiple sources etc.)

Representing lighting design

Lighting can be represented on a screen for conveying information on the:

Qualitative characteristics of light (position of source, shadows, color, projection)

quantitative

Help us to define numerical values on the effects of light on surfaces

Usually used to determine if lighting is appropriate for certain tasks

Can lead to optimizations for energy use and glare control

qualitative

Help us to define the aesthetic qualities of a space

Accurate projection of shadows provides more contrast information

Depiction of material textures and translucency inform us on the absolute behaviour of light on surfaces

3d space

Cartesian coordinate system with three axes

The centre of the coordinate system is 0, 0, 0.

The position on each axis corresponds to 0

The position of any point is identified by three numbers (x, y, z) corresponding to the distance from each axis

topology

Main topological characteristic is the point

Two connected points create one line

Three or more connected points form a surface

Five or more surfaces form an object

creation

Extrusion of a surface

NURBS (Non Uniform Rational B-Spline)

Transformation

Transformation

Parametric transformation (bend)

Parametric transformation (twist)

Parametric transformation (compress)

camera

24mm, 35mm and 85mm

lens

cone of vision

hither

hither

cone of vision

depth of field

Far focus

Near focus

exposure

F STOP 2.8

F STOP 5.6

qualities of light

intensity

smoothness

colour

projection

projection

movement

shadow

defines spatial relationships

defines spatial relationships

defines characteristics of shape

defines same colour objects

defines same colour objects

blends in with darkness

key light

Defines the position of the main lighting source

The most bright light source

Defines the colour and contrast of the shadows

fill light

Controls the quality of the shadows

Usually placed 90 degrees from the key light

Many fill lights can be used

back light

Provides visual depth

Defines the shape of objects by projecting light from the back

3-point lighting

transparency and refraction

texture

color mapping

bump mapping

Texture map

Bump Map

bump mapping

Without bump map

specular mapping

mapping techniques

UV mapping

