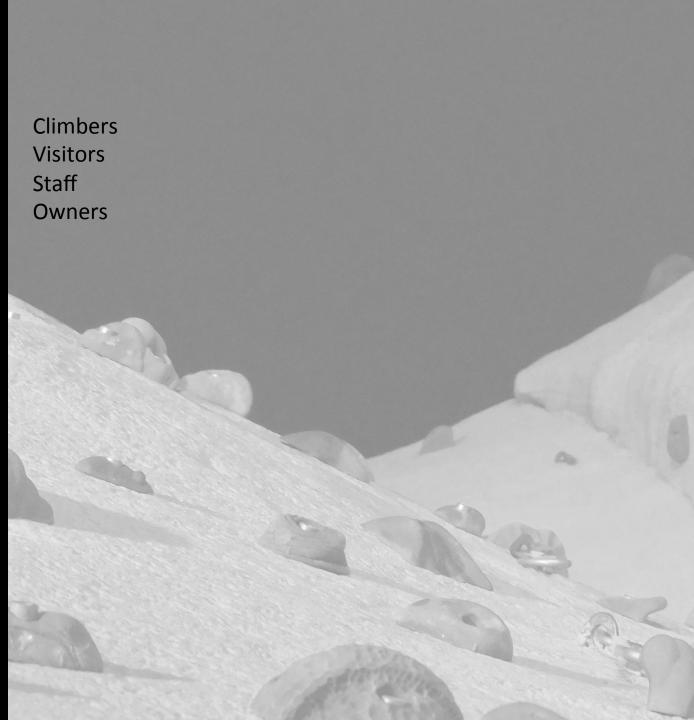


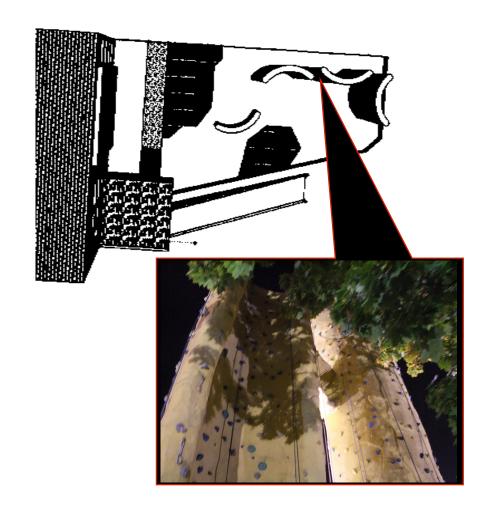
THE MAGIC MOUNTAIN CLIMBING CENTER

THE MAGIC MOUNTAIN CLIMBING CENTER

Böttgerstraße 20-26, U/S-Gesundbunnen, 13357 Berlin-Mitte


THE MAGIC MOUNTAIN CLIMBING CENTER

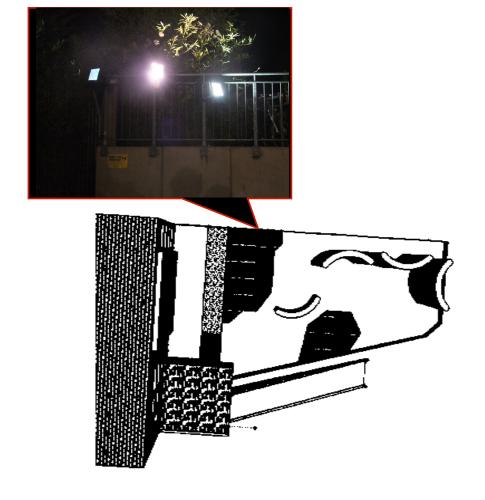
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying curren weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

Climbers - climb safely and comfortably
Visitors - pleasant use of the center facilities
Staff - work in a good environment
Owners - provide secure and enjoyable climbing experience
- advertising the center

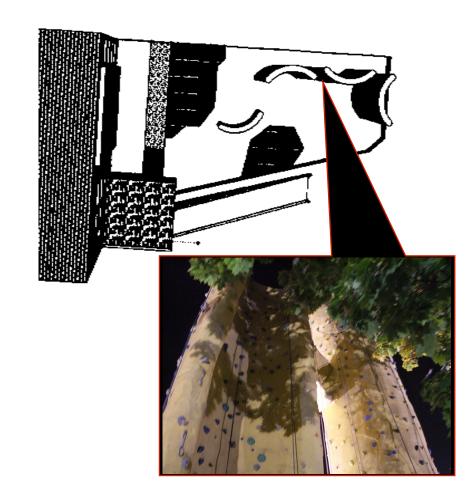
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
 - Dark areas
 - Glare
 - Energy waste
 - inability differentiating
 olds' colors (routes)
 - high light level
 - light pollution
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusior

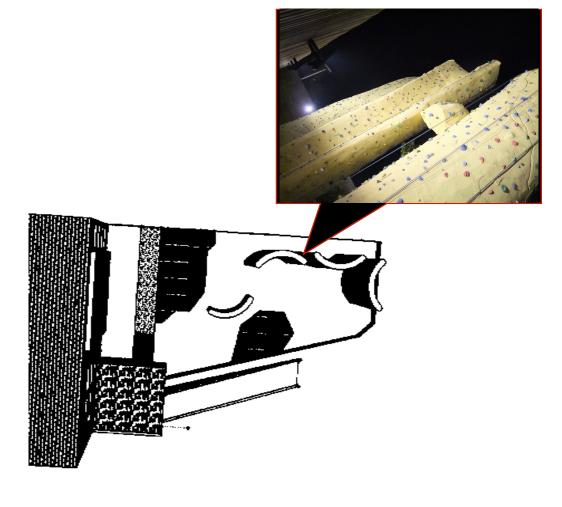

The Magic Mountain | Team 4 | 07-Oct-2015

METHODOLOGY

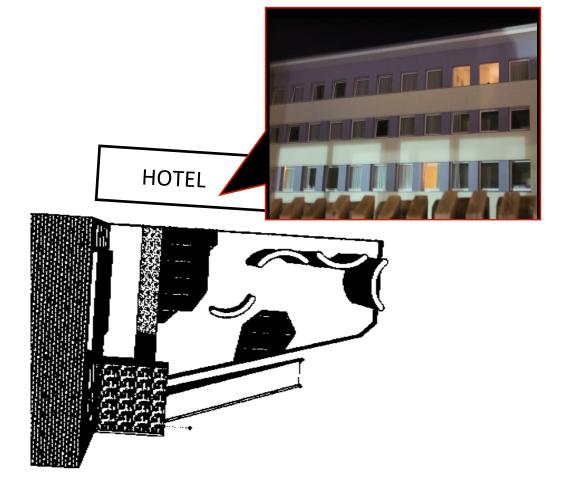
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
 - Dark areas
 - Glare
 - Energy waste
 - inability differentiating

holds' colors (routes)


- high light level
- light pollution
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
 - Dark areas
 - Glare
 - Energy waste
 - inability differentiating holds' colors (routes)
 - high light leve
 - light pollution
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusior

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
 - Dark areas
 - Glare
 - Energy waste
 - inabilitydifferentiating holds'colors (routes)
 - high light level
 - light pollution
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

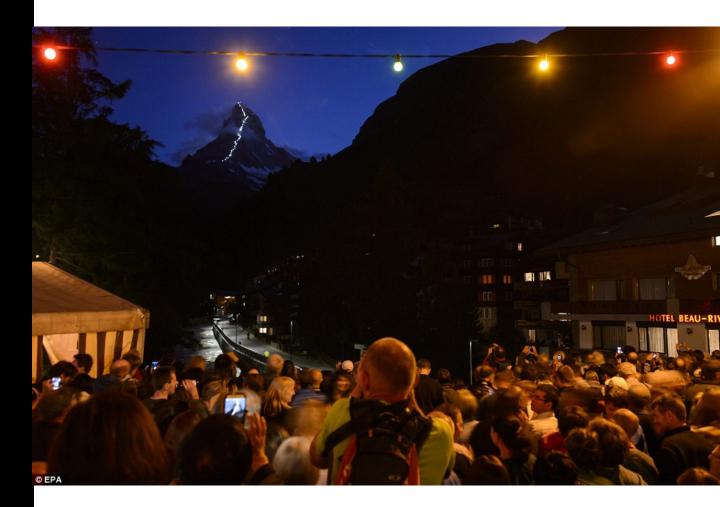


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
 - Dark areas
 - Glare
 - Energy waste
 - inability differentiating olds' colors (routes)
 - high light level
 - light pollution
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

The Magic Mountain | Team 4 | 07-Oct-2015

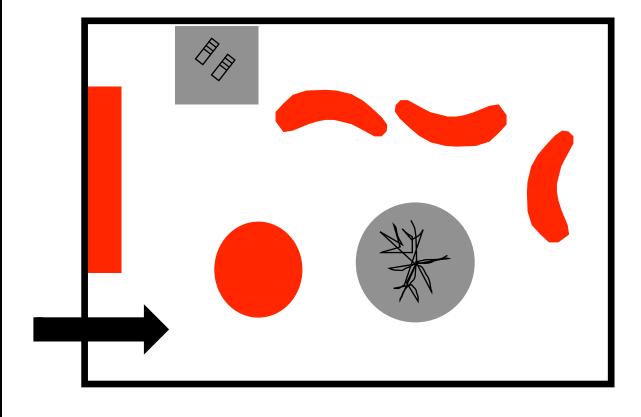
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
 - Dark areas
 - Glare
 - Energy waste
 - inability differentiating iolds' colors (routes)
 - high light level
 - light pollution
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying curren weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusior


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

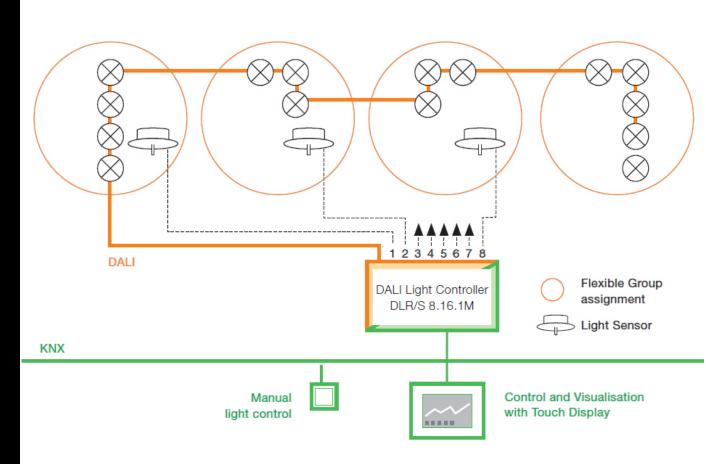
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusior


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusior

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
- Conclusion

- appropriate light levels (EU Standards)
- high uniformity
- maximum clarity
- light control (light levels and areas)
- emphasize the entrance
- signify the pathways
- efficient energy use
- avoid disturbing glare on the hotel building
- reduce light pollution
- propose installations for special events

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
 - different light zones
 - lighting control
 - customized lighting
- Proposing lighting plan
- Conclusion



walls

rest areas

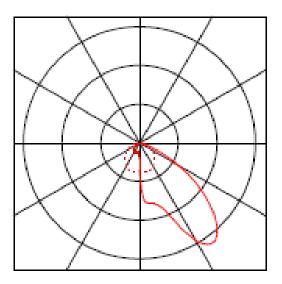
fence

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
 - different light zones
 - lighting control
 - customized lighting
- Proposing lighting plan
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
 - different light zones
 - lighting contro
 - customized lighting
- Proposing lighting plan
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
 - different light zones
 - lighting contro
 - customized lighting
- Proposing lighting plan
- Conclusior

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
 - different light zones
 - lighting contro
 - customized lighting
- -routes indicated through lighting
- Proposing lighting plan
- Conclusion



The Magic Mountain | Team 4 | 07-Oct-2015

METHODOLOGY

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

-Climbing wall luminaire

Luminaire data

Luminaire efficiency : 77.8% Luminaire efficacy : 77.8 lm/W

Classification : A40 ↓100.0% ↑0.0%

CIE Flux Codes : 44 84 99 100 78

UGR 4H 8H (20%, 50%, 70%)

C0 / C90 : 28.9 / 27.0

Control gear

 System power
 : 220 W

 Length
 : 530 mm

 Width
 : 532 mm

 Height
 : 80 mm

The Magic Mountain | Team 4 | 07-Oct-2015

METHODOLOGY

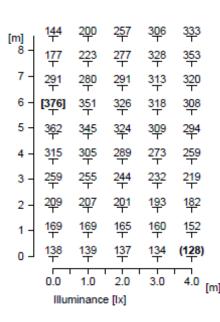
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

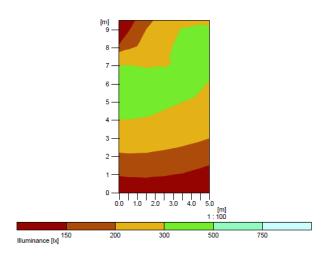
-Climbing wall luminaire

General

Calculation algorithm used Maintenance factor

Total luminous flux of all lamps Total power Total power per area (2500.00 m²)


Illuminance


Average illuminance Minimum illuminance Maximum illuminance Uniformity Uo Diversity Ud Eav Emin Emax Emin/Em Emin/Emax Average indirect fraction 0.80 110000 lm 1100 W

251 lx 128 lx 376 lx 1:1.96 (0.51)

1:2.95 (0.34)

0.44 W/m²

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

Р
0
W
Ε
R
С
A
L
C
U
L
Α
TI
0
Ν
S

- -Current Installations in the outdoor area:
 - ■13 Halogen Flood Light x 150 W =1950 W
 - ■1 Halogen Flood Light x 300 W = 300 W
 - ■Total for out door area = 2250 W
- -Proposed solution:
 - ■3 LED fixtures per wall x 220 W x 4 walls
 - = 2640 W

The Magic Mountain | Team 4 | 07-Oct-2015

METHODOLOGY

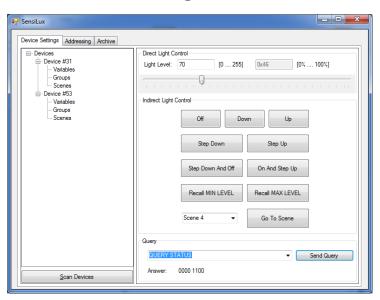
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

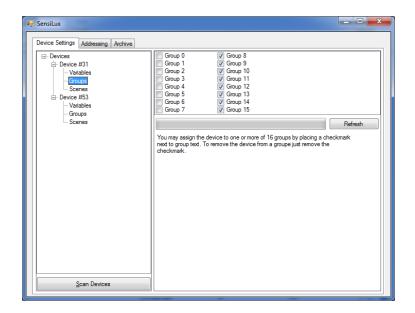
N S U P TI 0 N U Α 0 N S

```
-Energy consumption in the outdoor area:
```

- ■6 daily working hours x 1950 W =11.7 kWh
- ■12 daily hours for the ad. w 300 W= 3.6 kWh
 - ■Yearly consumption = 5.6 MWh
- -Energy consumption with dimming to 25 %

assuming 50% work load:


- ■(3h x 1980 W) + (3h x 1980 W x 0.25) = 7.43 kWh
 - \bullet (6h x 660 W) + (6h x 660 W x 0.25) = 4.9 kWh
 - ■Yearly consumption = 4.5 MWh


The Magic Mountain | Team 4 | 07-Oct-2015

METHODOLOGY

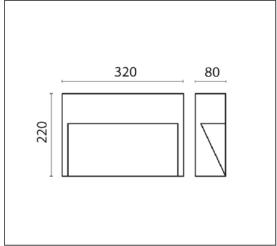
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

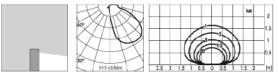
DALI Configurations

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

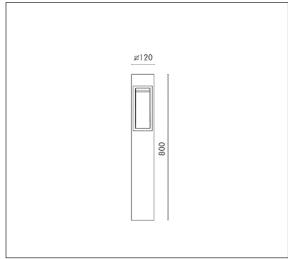
Climbing walls
 Area
 Lounge
 Entrance route

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusior


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

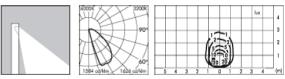

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

-Lounge area luminaire


MODULES LED 3000K 230V 1650lm CRI 80 Rated luminaire luminous flux: 304lm Rated input power: 18W Luminaire efficacy: 17lm/W Electronic ballast 220÷240V 50/60Hz

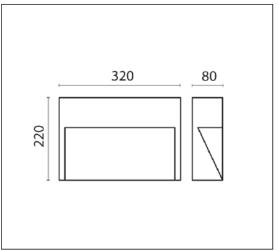
- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

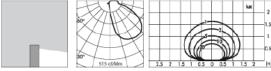
-Entrance luminaire



4 MODULES LED 3200K 230V 777Im 8.4W CRI 80 Rated luminaire luminous flux: 131Im

Rated input power: 11W Luminaire efficacy: 12lm/W


Electronic ballast 100÷240V 0/50/60Hz


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusior

-Lounge area luminaire

MODULES LED 3000K 230V 1650Im CRI 80 Rated luminaire luminous flux: 304Im Rated input power: 18W Luminaire efficacy: 17Im/W Electronic ballast 220÷240V 50/60Hz

The Magic Mountain | Team 4 | 07-Oct-2015

METHODOLOGY

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

-Fence luminaire

Product benefits

- Controllable via smart devices (via Android and iOS)
- Complete LIGHTIFY function
- Easy to install and use
- Contains no mercury

Product features

- Flexible, self-adhesive RGB strip with integrated smart lighting function
- RGB color control
- Adjustable color temperature via Tunable White: 2,700...6,500 K
- Dimmable via LIGHTIFY

Electrical data

Nominal wattage	18.0 W
Nominal voltage	220240 V
Mains frequency	50/60 Hz

Photometrical data

Color temperature	27006500 K
Luminous flux	839 lm
Light color (designation)	RGBW
Range of adjustable color temperature	27006500 K

Light technical data

Beam angle	120°
Light color management	RGB color control / Adjustable color temperature

Additional product data

Number of lighting outlets	120
Appropriate disposal acc. to WEEE	Yes

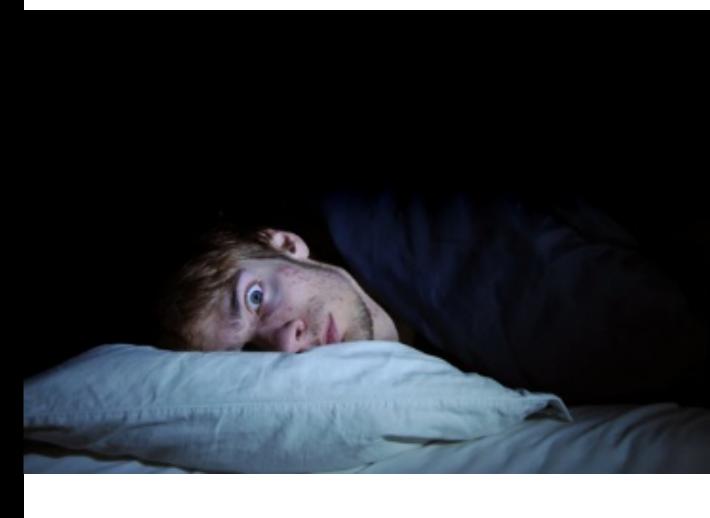
Capabilities

LIGHTIFY technology	Yes
---------------------	-----

Certificates & standards

Type of protection	IP20

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying curren weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
- reduce light pollution
 - special events
- Conclusior


- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
- reduce light pollution
 - * Skyglow
 - * Biodiversity
 - * Human health
 - special events
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Modelling
- Proposing lighting plan
 - calculations
 - technical info
- reduce light pollution
 - * Skyglow
 - * Biodiversity
 - * Human health
 - special events
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Proposing lighting plan
 - calculations
 - technical info
- reduce light pollution
 - * Skyglow
 - * Biodiversity
 - * Human health
 - special events
- Conclusion

- Identifying the groups of users
- Defining the needs of every group of users
- Identifying current weaknesses
- Research
- Aims
- Concept design
- Modelling
- Proposing lighting plan
 - calculations
 - technical info
 - reduce light pollution
 - special events
- Conclusion

- Compliance to the standards
- Comfortable and safe climbing experience
- Better use of the outdoor area
- Reduction of the yearly energy consumption by 20%
- Reduction of the light pollution

DORA KOURKOULI IHAB ADLY JULIE PAUWELS NATASHA FOIGEL NIKOS ZAIRIS

